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SUMDMARY

On the basis of linearized supersonic-flow theory, generalized
equations were derived and caleulations made for the lift and
damping in roll of a limited series of thin swepthack tapered
wings. Results are applicable to wings with streamuwise tips
and for a range of supersonic speeds for which the wing is
awholly contained between the Mach cones springing from the
wing apex and from the trailing edge of the roof section. A
Further limitation s that the tip Mach lines may not intersect
on the wing.

For the portion of the wing external to the Mach cones spring-
ing from the leading edge of the wing tips, the pressure distri-
butions for Iift and roll previously obtained for the triangular
wing are valid. For the portion of the wing contained within
the wing-tip Mach cones a satisfactory approximation to the
exact pressure distributions was obtained by application of a
point-source-distribution method developed in NACA TN 1382.

A series of design curves are presented which permit rapid
estimation of the lift-curve slope C:, and damping-in-roll
derivative Cy, for given values of aspect ratio, taper ratio, Mach
number, and leading-edge sweep.

INTRODUCTION

On the basis of linearized supersonic-flow theory the lift-
curve slope Cz, and damping-in-roll derivative (', of thin
triangular wings with large vertex angles were treated in
references 1 and 2. In reference 3 stability derivatives in-
cluding Cz, and C;, were presented for a series of sweptback
wings tapered to a point. The present analysis is an exten-
sion of the investigation reported in reference 3 in that, for
a similar range of Maeh numbers, the derivatives (g, and
O’,p are evaluated for a series of sweptback wings with finite
streamwise wing tips. The wings were derived by cutting
off the pointed tips of the sweptback wings reported in ref-
erence 3 along lines parallel to the free-stream direction.
The introduction of the finite wing tip causes an alteration
of the pressure distribution over the portion of the wing
contained within the Mach cone springing from the leading
edge of each wing tip. The wing-tip disturbances are con-
fined to these tip Mach cones and do not affect the remain-
ing portion of the wing.

For the case of a wing at an angle of attack the exact
solution for the pressure distribution in the tip region has
been reported in reference 4 by the method of superposition
of linearized conical flows. This solution (although inte-
grated therein for the tip loss in Lft for some cases) does not,
lend itself readily to the evaluation of the lift-curve slope for
families of wings. In the present report the pressure dis-
tributions in the tip region for Iift, and for rolling as well,
are determined to a close approximation by the application
of the method used by Evvard in reference5. The complete-
wing pressure distributions are integrated analytically to
obtain the lift-curve slope and damping in roll for general
families of wings.

The results of the analysis are given in the form of gen-
eralized equations for C;, and C;, together with a series of
design curves from which rapid estimations of Cz, and Cy
can be made for given values of aspect ratio, taper ratio,
Mach number, and leading-edge sweep. Some illustrative
variations of the derivatives with these parameters are also
presented. The derivatives are valid only for a range of
supersonic speeds for which. the wing is entirely contained
between the Mach cones springing from the wing apex and
from the trailing edge of the root chord. An added re-
striction. (which, for practical configurations, materially
limits the range of Mach numbers for very small aspect
ratios only) is that the Mach lines emanating from the wing
tips may not intersect on the wing.

SYMBOLS
2,9, 2 Qartesian coordinates of an arbitrary point
£ 2-coordinate and y-coordinate of a point source
in XY-plane
U, Uiy Wy induced flow velocities along X, Y, and Z
body axes (see fig. 2 (a))
o, oW incremental flight velocities along X, ¥, and Z

stability axes (see fig. 2 (b))
U, v oblique coordinates in plane of wing the axes
of which are parallel to Mach lines
(=25 &—Bn); v—55:(6+Bn)
2B 7798 K

oblique coordinates of & particular point on
surface of wing (see fig. 13)

Uy, Vw
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14 flight speed

a angle of attack (w’/V)

D,q, T angular velocities about X-, Y-, and Z-axes,
respectively

M stream Mach number (V/Speed of sound)

M pitching moment

N yawing moment

n Mach angle _ _

B cotengent of Mach angle (vM?—1)

€ angle between leading edge and axis of wing

: symmetry (see fig. 1}

A leading-edge sweep (90°—¢)

Gp= tan e

b angle between trailing edge and axis of sym-
metry (see fig. 1)

tan e
T tanp 6B
:“n (=N

L |

b wing span

e wing root chord

¢ “wing tip chord

S wing area

A taper ratio (ese,)

. (b2 2b
A aspect ratio (—S———-—(l —{—)\)c,)
w geometric parameter of wing
<2Cf00 44, _ 4m
b AQ+X) AB(Q+N)

Sp region of external flow field (see fig. 3)

Sw region of wing (see fig. 3)

g slope of stream sheet in external flow field
measured in planes for which s=Constant
(equivalent to symbol A used by Evvard)

@ perturbation velocity potential on upper
surface of wing or of stream sheet in
external flow field

P local pressure. difference between lower and
upper surface of airfoil, positive in sense of
Lift

P density of air

Cp pressure coefficient P

1 2
rldd
=1—m?
E'(m) complete elliptic integral of second kind with
/2 -
modulus % (j; V1—Fk? sin’z dz)
Eﬂ'(m)_ ——

F'(m) complete elliptic integral of first kind with
~f2 ,,
modulus % (f i oy
2(1—m’) . _
M) = Bt — e F () -
L lift
L rolling moment
Cr lift coefficient 7 L
E P T'HS
LI
C, rolling-moment coefficient T
o V280
2
Osm aoz,)
—0
C;,—[2%
’ aﬂ pb
2V /a0

Subsecripts:
0,1,2,.. particular regions of the wing or external flow

fields when associated with Sy or Sp
ex, in region of the wing external to the wing-tip

Mach cone and within the wing-tip Mach

. cone, respectively

(Ja ()p when associated with ¢, P, and C» indicate the

velocity potential, pressure, and pressure
coefficient for angle of attack and rolling,
respectively

ANALYSIS
SCOPE

The sweptback wings considered are sketched in figure 1.
In the following analysis and in the figures the wing plan form
with sweptback trailing edge (fig. 1 (a)) will generally be
considered and sketched as the typical wing, but the results
of the analysis are equally valid for the wing plan form with
the sweptforward trailing edge (fig. 1 (b)). The orientation
of the wing with respect to a body system of coordinate axes
used in the ansalysis is indicated in figure 2 (a). The surface
velocity potentials, the basic pressure distributions, and the
stability derivatives are derived with respect to this system.
Figure 2(b) shows the wing oriented with respect to the
stability-axes system. To the first order in « (the angle of
attack), the derivatives Cp_ and C, have the same value in
the stability system as they do in the principal body-axes
system (shown dashed in fig. 2 (b)).

The analysis is limited to wings of vanishingly small thick-
ness that have zero camber and are not yawed with respect
to the stream direction. The derivatives are valid only for a
range of supersonic speeds for which the wings arc always
contained between the Mach cones springing from the wing
apex and from the trailing edge of the root section of the
wing. (A wing traveling at speeds for which this condition
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(a) Sweptback trailing edge.

FIGURE L.—Swepthack wing with streamwise tips and sweptback or sweptforward frailing
edges. Note that trailing edge is alwaysinclined at sn angle greater than the Meach angle.
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(b) X

(h} Sweptforward trailing edge.
F1eure 1.—Concluded.

is satisfied is now commonly referred to as a wing with sub-
sonic leading edge and supersonic trailing edge. The terms
“subsonic leading edge’ and ‘‘supersonic trailing edge” refer
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(a) Notation and body axes nsed in analysis.

(b) Stability axes. Velocity, force, and moment arrangement in principal-body-sxes system
is identical to that of stability-axes system. (Principal body axes dashed in for com-
parison.) .

Fi1GURE 2.—System of axes and associated data.

to the conditions that the stream component normal to the
leading edge is subsonic and the component normal to the
trailing edge is supersonic.) An added restricton is that the
Mach lines emanating from the wing tips may not intersect
on the wing. These conditions expressed mathematically
as restrictions on B cot A are as follows:

For BA(1+M=2
BA@+)
BA(1+>\)+4(1_R)§B cotAS1
and for BA(14+M)<2
Balty 1< BAGEY
BATFNF40—N) SBcot A< T BATTY

BASIC CONSIDERATIONS

The evaluation of the derivatives Cp, and (;, essentially
involves a knowledge of the lifting-pressure distribution over
the wing associated with angle of attack for Cy, and with
rolling for C; . The lifting-pressure coefficients can be deter-
mined from the well-known relationships

P _2pV-u,-_4
1 v
2

0p= :

%sz =pV?

or
4 9
o= 55 9(%:¥) ey
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where ¢(z,y) is the velocity potential on the upper surface
of the wing under consideration. The potential ¢(x,y) can
be determined by a particular distribution of surface singu-
larities (sources or doublets) which will allow the velocity
potential to satisfy the linearized partial-differential equation
of the flow and the boundary conditions that are associated
with the wing in its prescribed motion.

For the purpose of evaluating the pressure distributions,
the wings under consideration can be imagined. as consisting
of two portions—the segment of the wing external to the
Mach cones springing from the leading edge of the wing tips

and the segment of the wing within the wing-tip Mach cones.

(the wing-tip region). The pressure distribution for the
. wing region external to the wing-tip Mach cones is precisely
the same as the pressure distribution for the corresponding
section of the triangular wing for the same value of Mach
number and leading-edge sweep. For angle of attack and roll
the associated pressure distributions for the portion of the
wing external to the wing-tip cones have been evaluated in
references 1 and 2.

The pressure distribution within the wing-tip Mach cone
remains to be determined. For this region the point-source-
distribution method of Evvard reported in references 5 and
6 may be applied to the evaluation of an approximate surface
velocity potential from which the pressure distribution may
be determined. If the considerations of reference 6 are
followed, the exact linearized surface velocity potential for a
lifting wing is given by (see fig. 3)

=fo adédy _
T Swo+irz+3+a (2— H—By—q)?

Z : e dédy
“"'ffsp<1+z+s+4+5) V(@— 93— B¥y—1)?

)

The first integral of equation (2) expresses the contribution
of the sources distributed over the region of the wing located
within the forecone of the point (z,4). The second integral
expresses the contribution of the sources over the external
flow fields that influence the point (z,y). For the influencing
external flow fields the strengths of the source distributions

FiouRE 3.—Sketch of wing regions Swe, . . . o and external flow regions Spa, ...n.
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are directly proportional to o, the component slope of the
stream lines parallel to the free-stream direction. It isshown
in reference 6 that under certain conditions the contribution
to the potential of the source distribution on the wing surface
may in part be effectively canceled by the contribulion to
the potential of the source distribution of the influencing
external flow fields. Application of this knowledge o the
wing considered herein (fig.'3) gives the following relation-
ships, which are analogous to those obtained for the yawed
wing in reference 6:

ff o didy
Spe+ratern /(2— &P —B y—n)?

—_ Lo dfdy
_Ifswa+3+4) Ja— ' —By—n) 3)
and
f f o di dy ]
Spats+ay (2—E'—BXy—1)?
— a dEdy
S T ¢

The substitution of equations (3) and (4) info equation (2)
gives the surface velocity potential for the wing-tip region:

_y a df dn _
=

I

TffSD(3+4) Je—b—By—ne

)

It is pointed out in reference 6 that, nasmuch as ¢ and @
have the same sign, the second and third integrals of equa-
tion (5) will tend to nullify each other. These integrals
will also contribute relatively less than the region Sy, to
the potential in the tip region because of the relatively large
distance of the fields Sws and Spays from the tip region.
As the areas Sws and Spasy become smaller (Mach lines
approaching the leading edge of the wing), their contribution
to the potential will tend to become negligible. On the
basis of these considerations the second and third integrals
of equation (5) were neglected and the surface velocity
potential for the wing-tip region may now be expressed
approximately by

___z adtdy
- Wf f Sw.0 /(x—§P—B¥y—n)*

DERIVATIVE Ci,

(6)

The derivative (; for the entire wing may be expressed as

O‘La=% (Gbez-l- OLiu) = (Oﬁa) ez+ <OI"“) in (7)

where the subsecripts ez and in refer to the part of the wing
external to and within the wing-tip Mach cones, respectively.
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Region of wing external to wing-tip Mach cones.—For the
region of the wing external to the tip Mach cone, the pres-
sure distribution is the same as the pressure distribution
for the corresponding portion of the triangular wing. This
pressure is given in a nondimensional form by the following
relationship:

_(Pde_ 4G 1

(0 gg;)q 14 Gl (8)
) %pV2 E(m) {1—»
L0 —
.- Ifm}

9 ™ \
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FIGURE 4.—Variation of the elliptic infegral factors E”(m) and I(m) with m.

-Center of pressure

for (P)=f(v)

-Center of pressure
for (Bl =xf(v)
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Equation of EG: z=B ([l_y).;.i.
2 289
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Equationof HF: z Tans

. . . (Bb8g—2c,601b) tans
Intersection of £@ and HF: y=m
FIGURE §5.—Sketch of right panel of sweptback wing showing an elemental triangle and
data pertinent to limits of integration.
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where » is proportional to the slope of a ray from the apex .

of the wing through the point (z,7) ; that is, y= 3?’;- The quan-
0

tity E’(m) is the complete elliptic integral of the second
kind that gives the variation of the pressure with the ratio
tan e
tan ,u.-
pressed by equation (8) over the wing ares external to the
tip Mach cones will produce the resultant lift for this portion
of the wing. The general conical form z*f(») noted for the
pressure relationship suggests the integration procedure
employed in reference 3. Thus the external region of the
wing is imagined as composed of an infinite number of
elemental triangles (see fig. 5) and the lift is then determined ‘

(See fig. 4.) Integration of the lifting pressure ex-

for an elemental triangular area (—;— T clyl)— The lift coeffi-

clent for the external region may then be expressed as follows
(for limits of integration, see fig. 5):

OLe-r, 1 L
2oV
_2 [ [ (Crads+ (0%),‘(13]
S Region Regian
OHG Regla
A+m)b~—2Age,
_ 46,—200204 a(iFm)b+ambge, dy a
_SE’(m) o (1__,”)2_‘/1—_7 T
{1+ m)?*b% fl dy ©
SE (m) atmp-2oe, (14 ma)2/1—
0 (1+m)b-+2mége,

Region of wing within wing-tip Mach cones.—The lift
coefficient (%, for the region of the wing within the wing-tip
Mach cone is evaluated by initially determining the surface
velocity potential ¢. For lift the appropriate potential is
given by equation (6); that is,

N dg dy
@- TJJ%%V@—W—F@—ﬂ’

The evaluation of this equation carried out in appendix A
yields

2 Voe\/2 (By+ mz) (6—2v)

- BT m) (10)

The lifting-pressure coefficient is then obtained by the sub-
stitution of equation (10) into equation (1):

(@n), = 5 @

- _Sa / 60 E—
= V1+Bg :c-i—g
0

In equations (10) and (11) it should be noted that the vari-
ables z and y are restricted to the portion of the wing within
the wing-tip Mach cones.

(11)
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Integration of the lifting-pressure coefficient defined by equation (11) will give the resultant lift coefficient for this
portion of the wing. The lift coefficient for the wing-tip region may then be expressed as follows (for limits of integra-
tion, see fig. 5):

L
% R

2
=_S;f Lem‘on ( OPin) @ dx dy
EGF

OL. =

o

16oe 6o fb/z ' J‘tans 'J%(b —2y)
1+ BoJsatm) -2, ( ) Lt 2(90x+y)d % dy (12)

T atmtmy 26y

The result of carrying out the operations indicated in equations (9), (12), and (7) yields the following mmphﬁed expression
for Cp, of the entire wing in terms of m, n(>0), 4, and w:

o 4 { o [Sin-ln_sin_l(1+m)(n’—1)+w(1+mn):| (11+m L ltmnte(m—1), et

L= Em) \ L —nD" o(min) myer 08 mtn Ly

lonm— Dt DY L D o D o= D1+

{(1+n+_¢._,)2 o1 Q(m—n)+2(1—w)+mtn 1 cos-1 1+ mn+w(m— 1)+
W‘Jl"}"m 4(1+n)3f2 G <1+n+w)(m+n) ( m)a,"? m_l_n
1 1 —w(l—
(ZE::?IZS@)-(T?- m)aég.-i-n?;%) V(ot+n—1)[(L+m)(n+ 1)+ o(m—1)] } (13a)
When m=1, equation (13a) reduces to the following expression:
_24 w? <y 12— 1D+ oT, (@t+n—1)% o, (Q+nd)f? —fN—w
OLQ'— T {(I_nz)a‘fg[sln p—sin~?t " l(‘n—]_)-\/’m 1 ng—l 2((1—[—7’[, P cos™ 1+ﬂ+w} (13b)

DERIVATIVE Ct,

The derivative Oy, is evaluated in & manner similar to that used for Cg,.
Region of wing external to wing-tip Mach cones.—For the region of the wing external to the wing-tip Mach concs, the
pressure coefficient is obtained from reference 2 as

(Opez) ’ 227 I (m) 60 (

(14)

- )
The corresponding rolling-moment coefficient is expressed by

Otmg L
5P ViSh

The evaluation of equation (15) is simplified by employing the integration procedure used for Cp,. The contribution to
the rolling-moment coefficient of each of the elemental triangular areas (see fig. 5) is given by

401, =—%d0s,, | (16)
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where 4, is the lateral distance of the center of pressure of
an elemental triangle from the X-axis of the wing and d(,,
is the lift coefficient of an elemental triangular area. The
analysis of reference 3 shows that for a pressure distribution
of the form zf(v), which is the form of the pressure of equa-
tion (14), the lift of an incremental triangle can be expressed
as

dL,;—-— pV?AS,; dCz,
=T
=.£=0 zf()xb, dvde
=6, f(») %13 dv
J-_ p'r'og ( Pez)p zi d (17)

2 T

where 2, is the height and AS,, the area of an elemental tri-
angle. The quantities z; and ¥, given in terms of » and other
paremeters mey be expressed as follows (see fig. 5):

Region OHG

2=

R Ry

_3_& ,
Y=g 10 ¥

Region OGE (18)

o 2™ T

1720, (1+my)

36(1+m) »
0 8 1+my

o

Use of equations (16), (17), and (18) leads to the following -

integral expression for (',

(1-+m)b—29g¢,
o ¢ 201 (m)p (“ROFmb-Femdoe, vidy
=TT SV Jo (l—no)il—®
B4 m)I(mp [* v
16VS Qtmb~2%e, (14 mp)ty/1—»?
a(t+m)b+2mige,
(19)
LI
O'in 1
5 pV2Sh

9
St f L  (Ce)ydady
ECGF

16p6,
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Region of wing within wing-tip Mach cones.—For the
region of the wing within the wing-tip Mach cones, the
rolling-moment coefficient is evaluated by employing the
approximate surface velocity potential given in equation (6);
that is,

14 o dfdy
~2f fovo Ty

The velocity potential given by equation (6) can be expressed

so as to apply to the rolling wing by considering the local

slope of the airfoil surface with respect to the flow direction.
For the thin wings of zero camber considered herein, the
slope at any lateral station ¥ is the local angle of attack of
the wing and is equal to p3/V. Substituting pn/V for & in
equation (6) gives the approximate linearized surface veloc-
ity potential for the rolling wing; that is,

P ndE dy
ORI =

The evaluation of equation (20) carried out in appendix B
yields

p [2yB@m+-1)+bB(mt1)— 2mz] V2(By+maz) (0—2y)
(s 3 [(I+m)B]¥2
@1)

Differentiation of the potential given in equation (21) yields
the pressure distribution for the rolling wing:

4 2
(Orin) 7 =v '5:‘6‘ (¢)p

: 8P{60[390x+y(1—2m)— (l—l—m)]\/j}
TR

3(1+m)+ (boz+9) (1 +m)

(22)

In equations (21) and (22) the variables z and y are re-
stricted to the portion of the wing within the wing-tip Mach
cones. The rolling-moment coefficient for the region of the
wing within the wing-tip Mach cones can be expressed as
follows (for limits of integration, see fig. 5):

Tore y| 36z+y(1—2m)— (1 m) -‘/——
b/2 tan 8 I: 0 :l dzdy 23)

37V Sb(+m)

b(1+m)—2¢6:69
T 2(m+try

3(-— )+—-

(G- y)(1+m

The sum of expressions (19) and (23) is the rolling-moment coefficient for the entire wing. Evaluating the integrals in these
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b
expressions and then differentiating with respect togvglve the following derivative C;’ in terms of the parameters m, n(>0), 4,

and w:
o, LA fatn@n+13)  @n+ DI (Mm@ —=Dtoimatl) o, 7 @m+ DVItm  _elm—1+ mn+1
=78 { 6(i—1¢ 1 2(1—nhe| S o(m+1) s 30 —m) mtn
(1 — o+ m) [n(1 + m— o) (6044 1002 — 1)+ 3(1 — 9n°— 20) (n+ mn+ mw)] + (2774 13) (n+ mn+ mow)®

wy{l4+m

VioFn—D[A+m) A +n)Fw(m—1)]+
(1 — o+ m)[m(l—wtm)(l —10m*—6m*)+3(1—9mi—

6(n?— 1} (m—-+-n)?

2mf)(n+t mﬁ+ mw)]— m(2m?*4 13) (n4 ma+ me)®

8(m—1)*(1+m)**(n+ m)*

ST DT M A Fam=Dl{ -

s (—4(n+1) (I+m—w)(1—m) (145 ng (—11- -51— [Sz?ln_-{— ,,f)??,ﬁ_; ;a— w) (1 —m)*+2m(n+1)*(1+3m)] [(-b)—
(o 1)1+ (n?— m) ey 5(1+n—w)?(l— n-I-Zm)-E-‘;gigs[(? 3w-|—2m)(1+n)+2w2]{n(n-—m) (2-&?2{5;)_25‘,)_7“(1_]_&,)
ST D AT CEm)F am— D1+ itk cos+ 2 gﬁffcf)l(;‘i;)“(”' 4
(1+3<1n)_(f£32+1)§1+%ﬁ§)12 VT DT m @ FnFam—1]—g= L cos™ "’(m“ﬁj;’m*’l}) (249)

For m=1, equation (24a) ‘may be expressed in the following manner if the tip region is neglected (see section entitled

“Results and Discussion’’):

—32n+15)1 n—14w
}\/ 14n +

(24D)

o,p=_4;r"’( { l‘*é“;:&i;’))a [4(2n7 4 10+ 23) 4 B(5 o— 4n—24)] +
3e?(4n?4-1)+-48(n—1)+8(n— 1Y (0 —8n)o+ 26 (n— 1) (1 207
12a(mf—1y
St4a) /. L . 2n—240) o*n(1342
;é—n?)?/? sin~*n—sin™! o c‘})_mz’né((nz—1)7;,2))

RESULTS AND DISCUSSION

Formulas have been derived for the evaluation of the
derivatives C;, and (', based upon considerations of the
linearized supersonic-flow theory. For the wing regions ex-
ternal to the tip Mach cones, the exact linearized pressure
distributions for the derivatives were obtained from refer-
ences 1 and 2. For the portion of the wing within the tip
cones, the derivatives were approximately evaluated by ap-
plying the method used by Evvard in reference 5.

Although the exact pressure distribution in the tip region
is not conical, the approximate pressure distribution given
by the present method (equations (11) and (22)) turns out
to be conical (in the generalized sense) with respect to the
image of the wing tip reflected on the YZ-plane. (See fig. 6.)
That is, if 2" and ¥ represent coordinates with respect to the
image point, the pressure distribution in the tip region is of

the form, for lift
I
=1 (%)

and, for rolling

P=fi(L)+en (L

In figure 7 the pressure distribution for lift is shown along a
chordwise section A—A and a spanwise section B-B, which
cut through the wing-tip region. TFor this region of the
wing, a comparison is shown of the approximate presswe
determined herein with the exact pressure distribution com-
puted from reference 4.. The comparison indicates the sat-
isfactory accuracy of the approximate pressure-distribution
relationship. The almost negligible lift in the tip region
and the abrupt drop in lift across the inboard Mach line from
the wing tip has already been pointed out in reference 4.
The existence of an abrupt drop in lift in crossing the wing-
tip Mach line may be readily inferred from Evvard’s equation
(7a) of reference 7. (Equation (7a) is strictly applicable to
8 wing with one supersonic leading edge. The leading edges
of the wing under discussion, however, are subsonic. The
general argument leading to equation (6) herein may be
used to justify an approximate application of equation (7a)
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FIGUuRE 6.—Sketch of right panel of wing indicating conicel flow nature of wing-tip region
with respect to the image point.

7 to the present wing.) HEquation (7a) may be

dv—du
A Vm—dom—)

g__:[ duy’ (vw)]_\ vw—vl A

dow Uy — Uz’ (Vw)
This equation gives the pressure coefficient at any point
(uw,vw), expressed in oblique coordinates. (See fig. of
appendix A.) The second term in equation (25) contains

the factor 1— duéb(v,;—) that involves the slope of the side
w

edge __dué ﬂ(:_W)-

of reference
written

(OP) a—

(25)

Thus any abrupt break in the slope of theside

edge gives rise to a discontinuity in the pressure distribution
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FIGURE 7.—Chordwise and spanwise pressure distributions for lift in sectional planes through
the wing-tip region.

on crossing the Mach line emanating from the break.
In particular, when a portion of the edge is parallel to the
stream direction (as is the ease for the streamwise wing tip)

4 ..
U (V) . Hence, the term containing

the value of “dv, = unity.

duy(vyw) - cp -
I—W— is zero and the lift is found to drop to a small
magnitude on crossing the tip Mach line in the wing-tip

region.
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Figure 8 shows the chordwise and spanwise pressure dis-
tributions for rolling. A similar situation of large finite
drop in pressure across the wing-tip Mach line exists for
rolling analogous to the lifting case. (See reference 8.)
The interesting result obtained is that the rolling pressure is
negative in the wing-tip region. This behavior is due to the
fact that the sign of the pressure in the wing-tip region is
affected only by the angle of attack of the leading edge of
the plan form on the opposite side of the roll axis which for
positive roll is negative. (See reference 8.)
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F1GURE 8.—Chordwise and spanwise pressure distributions for rolling in sectional planes
through the wing-tip region. '
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The exact solution for the rolling-pressure distribution in
the wing-tip region has not at present been determined. In
view of the good agreement between the approximate and
exact pressure distribution of the lifting case, it is believed
that & comparably good agreement should exist for the
rolling case. The present approximste method should be
adequate for determining the integrated lift and rolling
moment, especially since the pressures in the tip region are
small. For a practical evaluation of the derivatives, the
wing-tip regions may be completely neglected and the
resulting error in Cz, and €, would be well under 5 percent
compared with the values of these derivatives obtained from
the method used herein.

A series of generalized design curves are presented in figures
9 and 10. For specified values of aspect ratio, taper ratio,
Mach number, and leading-edge sweep, the derivative Cp,
may be readily estimated from figure 9 and the derivative
C,, from figure 10. The dashed portions of the curves

require special mention. These portions correspond to wing
configurations for which the trailing edge is subsonie, in
violation of one of the basic assumptions (see section entitled
“Scope’’), and have the significance of an upper limit below
which the true values of the derivatives would lie for the
condition of subsonic trailing edge. This circumstance is
explained and the limitations on the dashed portions of the
curves amplified as follows: In the present calculations the
basic conical pressure distribution (except in the tip region)
was assumed to persist up to the trailing edge. This pro-
cedure is correct for a supersonic trailing edge; but, for a
subsonic trailing edge, it neglects the contribution of a region
of disturbance due to the edge. This region of disturbance
lies between the trailing edge and the Mach lines from. the
apex of the trailing edge. The neglected subsonic-edge
disturbance is in the direction to reduce the lift and the
rolling moment. Therefore, the dashed portions of the curves
in figures 9 and 10, which correspond to regions of the graph

. for which the trailing edge is subsonic, overestimate the

values of lift or rolling moment. The error is small when
the disturbance region is small (sections of dashed curves
adjacent to solid sections) and is larger when the disturbance
region is large (sections of dashed curves remote from solid
sections). Equations for the quantitative evaluations of
the trailing-edge disturbance for the lifting case (provided
that the Mach lines from the trailing edge of the center sec-
tion do not intersect the leading edge) are given in reference
4, together with two examples. The major part of the sub-
sonic edge correction is given by equation (55) of that refer-
ence. The application of this correction to the design charts
for Cr, presented herein affects only a small portion of the
dashed sections of the curves immediately adjacent to the
solid sections and results in unimportant chenges to the
values of Cf,.

Specific variations of the derivatives Cy, and Oy, with each

of the parameters—aspect ratio, taper ratio, Mach number,
and leading-edge sweep—are presented in figures 11 and 12,
respectively.
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i CONCLUDING REMARKS

Based upon the.concepts of linearized supersonic-flow
theory, the lift-curve slope O’La and damping-in-roll deriva-
tive 0y, have been evaluated for a limited series of sweptback
wings (with streamwise tips) of arbitrary taper and sweep.

The investigation was limited to a range of Mach numbers
for which the wing is completely enclosed between the Mach
cones springing from the wing apex and from the trailing
edge of the root chord of the wing. An added restriction is
that the Mach lines from the wing tips may not intersect on
the wing.

The results of the analysis are presented in the form of
generalized design curves for rapid estimation of the deriva-
tives. Some illustrative variations of the derivatives with
aspect ratio, taper ratio, Mach number, and leading-edge
sweep are also presented.

¥

LANGLEY AERONAUTICAL LABORATORY,
Nationar. Apvisory COMMITTEE FOR AERONAUTICS,
Laneuey Fierp, Va., February 15, 1849.
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APPENDIX A

EVALUATION OF POTENTIAL FUNCTION FOR LIFT

The integral expression for the potential

(A1)

. __I"_a dt dy
e f f Swo A(z— 8 — By —n)?

is easily evaluated by use of an oblique #,» coordinate system,
the axes of which Le parellel to the Mach waves. (See
reference 5.) The transformation equations are

i1 h
=§—é (¢—Bn)
r=gk (¢4-Bn)

- (A2)

=2 ()

1
n =¥ (v—u)

YWhen the a;ppropl'ia.te substitutions and simplification are
performed, equation (Al) becomes

dudv

Va '
@e=r77 f f Sw.o V(uw ~u) (0w —v) -

where uw and o are the coordinates of the field point and are
related to the 2,7 system as follows:

um =2k By |
44

M
rw=gg (z-+BY)

N\ _-~Mach line

/ -~
s AN
I
P & N AN _\}___u=uz-(v}
gy ‘ _(1-65B) LSWO N SN
o Y B;“N- S AN
S usup{v} [ M
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U
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L’ .- =uz(vy)
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S CAN
v N

LY or Uyuy

F1cURE 18.—Sketch of wing showing region of integration (area Sw.e) for the evaluation of
the surface velocity potential for Lift and roll.

The limits of integration are readily obtained from figure 13
and the potent—ial function may then be expressed as

o du w dv A=
(¢)m _11- oM \-'_—uw-—u — —\f__l,’u——f) (AD)
ty—3 TFm oW
The integration yields
4V , bAL
(¢)a Tl[ —\ Vp— l_l_mu;r)(uw ﬁw-[— ) (A'G)

When equation (A6) is expressed in terms of ,y coordinates,

the formula obtained is .
2 ; 9 '

=272\ [REuE mE ) a7

and is given as equation (10) in the text.



APPENDIX B

'EVALUATION OF POTENTIAL FUNCTION FOR ROLL

The integral expression for the potential

=2 [, T B
may be evaluated by the same method used in appendix A.
Upon substitution of the new variables and simplification, equation (B1) becomes
(¢),= J‘f _ (v—w)dudv _D f"n’ f"w (-v—u)du. dv o
sw.0 Uy —w)oy—2v) M’ E‘Z"‘“’l: - x/u;y—-u] Now—0v (B2)
where the limits of integration are obtained from figure 13.
‘When the integrations indicated in equation (B2) are performed, the following expression is obtained:
(#)r=3 Mz('vw 11_:_3;: U +bTM)\/ (v ' i_—l_zuwxuu vw-{- (B3)
Equation (B3) transformed into z,y coordinates becomes
@, ?fo_ [2yB@m+1)+bB(m+1)—2mz] y2(By + mz) (b—2y) B4)
T [+ m)BJ
and is given as equation (21) in the text.
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